

Course Information

Course Title:	Engineering Analysis 1 (0610260)
Prerequisite:	Differentiation and integration 2 (0250102)
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)
Textbook:	Advanced Engineering Mathematics By:Erwin Kreyszig 10th edition, 2011
References:	<ul style="list-style-type: none">Boyce, William E., DiPrima, Richard C., Elementary Differential Equations, ninth Edition, Wiley, New York, 2009.Rabenstein, Albert L., Elementary Differential Equations with linear Algebra, Third Edition, Academic Press, New York, 1982.Krusemeyer, Mark, Differential Equations, Macmillan Publishing Co., New York, 1994.Simmons, George F., Differential Equations with Applications and Historical Notes, third edition, Taylor & Francis Group, LLC, 2017الدكتور عبد الرحمن القراسمي و المهندسة ندى نبيل الخطيب "المعادلات التفاضلية تطبيقاتها الهندسية" الطبعة الأولى، طبع بدعم من جامعة فيالدلفيا، مطبعة الخط العربي 2011http://www.sosmath.com/diffeq/diffeq.html
Website:	https://www.philadelphia.edu.jo/academics/zalatari/
Course Description:	The course is a requirement for all engineering students. It introduces the fundamental of ordinary differential equations and the most important methods for solving them with emphasis on applied problems in engineering and physics. The Laplace transform and power series are presented as an alternative method for solving the ordinary differential equations.
Instructors:	Dr. Zaid Al-Atari
Course Coordinator:	Dr. Zaid Al-Atari
Technology Requirements:	<ul style="list-style-type: none">Personal computer, laptop, or mobile phone.Internet Connection.Access to Philadelphia University E-Learning Portal (MS Teams and Moodle)
Learning Style:	(F2F; Blended; or Online): Blended
Communication:	<ul style="list-style-type: none">Announcement: the announcements will be posted in MS Teams or Moodle on a regular basis.Email.MS Teams or Moodle chats.
Course Objectives:	<ul style="list-style-type: none">Solve first and second order differential equationSolve higher order differential equationLaplace and inverse Laplace transformationPower series method

Course Learning Outcomes (CLO) and Relation to ABET Student Outcomes		
CLOs	Outcomes	ABET PLOs
K1, K2	Understand Basic concepts and the elementary of DE	1
K1, K2, S3	Be able to distinguish the appropriate methods to solve DE	1
K1, K2, S3	Use fundamental knowledge to analyze and solve different engineering models.	1
K1, K2	Able to use Laplace Transform and power series to solve DE.	1

Grading Policy and Assessment Instruments					
Graded Item	Marks	Topic (s)	CLO(s)	Learning Portal (Teams/ Moodle/ F2F/ Others)	Week
Assignment 1	5	Second Order Differential Equations	2	Moodle	6
Assignment 2	5	Laplace Transform	3	Moodle	9
Quiz 1	5	First Order Differential Equations	3	F2F	4
Quiz 2	5	Power Series Method	1	F2F	10
Participation	10	Discussed in class	1-5	F2F	12
Mid Exam	30%	Weeks 1-8	1,2,3	F2F	8
Final Exam	40%	Week 1-15	1-5	F2F	16
Total Marks	100%				

Notes:	<ul style="list-style-type: none"> Two written exams will be given. Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero marks for that homework. Quizzes: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s). Homework: Problem sets will be given to students. Homework should be solved individually and submitted before the due date. The final exam will cover all the class material.
--------	--

Course Content: Learning Resources/ References/ Activities/ Assessment Methods

Week	Lecture	Topic	CLoS	Learning Resources/ References/ Activities (Learning and Teaching Methods)	Learning Style (F2F, Synchronous, Asynchronous)	Assessment Method
1	L1	Basic Concepts	K1	Lecture Notes + Moodle	F2F	
	L2	Differential Equations order and degree	K2	Lecture Notes + Textbook 1.1	F2F	
	L3	Introduction to DE	K1 K2	Recorded video + Moodle	Asynchronous	
2	L1	First order DE (separable)	K2 S3	Lecture Notes + Textbook 1.1	F2F	
	L2	First order DE (non-separable)	K2 S3	Lecture Notes + Textbook 1.3	F2F	
	L3	First order review	K1 K2	Recorded video + Moodle	Asynchronous	
3	L1	First order DE (exact)	K1	Lecture Notes + Textbook 1.3	F2F	
	L2	First order DE (exact)	K2	Lecture Notes + Textbook 1.4	F2F	
	L3	First order examples	S3	Online lecture on Teams	Synchronous	
4	L1	First order DE (non-exact)	K1	Lecture Notes + Textbook 1.4 Quiz 1	F2F	
	L2	First order DE (non-exact)	K2	Lecture Notes + Textbook 1.5	F2F	HW
	L3	Bernoulli Equation	K1	Recorded video + Moodle	Asynchronous	
5	L1	Second order DE 1	K2	Lecture Notes + Textbook 1.5	F2F	
	L2	Second order DE 2	K1	Lecture Notes + Textbook 1.5	F2F	Quiz
	L3	Second order Example	K1	Recorded video + Moodle	Asynchronous	
6	L1	Second order DE (homogeneous)	K2	Lecture Notes + Textbook 2.1	F2F	
	L2	Second order DE (homogeneous)	K1	Lecture Notes + Textbook 2.2 Homework 1	F2F	
	L3	Second order DE Example	K1	Recorded video + Moodle	Asynchronous	
7	L1	Second order DE (non homogeneous)	S3	Lecture Notes + Textbook 2.1, 2.2	F2F	
	L2	Second order DE (non homogeneous)	K2	Lecture Notes + Textbook 2.7	F2F	
	L3	Second order DE review	K1	Recorded video + Moodle	Asynchronous	
8	L1	Modelling 1	K1	Lecture Notes + Textbook 2.7	F2F	
	L2	Modelling 2	K2	Lecture Notes + Textbook 2.7 Midterm Exam	F2F	Quiz
	L3	Review modelling	K2	Online lecture on Teams	Synchronous	
9	L1	Electrical Applications of DE	K2	Lecture Notes + Textbook 3.1	F2F	
	L2	Mechanical Applications of DE	K1	Lecture Notes + Textbook 3.1	F2F	HW
	L3	Other applications	K2	Recorded video + Moodle	Asynchronous	
10	L1	Higher order DE 1	S3	Lecture Notes + Textbook 3.2 Quiz 2	F2F	
	L2	Higher order DE 2	S3	Lecture Notes + Textbook 6.1	F2F	
	L3	Higher order DE example	K2	Recorded video + Moodle	Asynchronous	
11	L1	Laplace Transform 1	K1	Lecture Notes + Textbook 6.2	F2F	
	L2	Laplace Transform 2	K1	Lecture Notes + Textbook 6.3	F2F	
	L3	Inverse Laplace 1	K1	Online lecture on Teams	Synchronous	

12	L1	Inverse Laplace 2	K2	Lecture Notes + Textbook 6.3	F2F	
	L2	Laplace Prosperities 1	K2	Lecture Notes + Textbook 6.3 Homework 2	F2F	
	L3	Laplace Prosperities 2	K1 K2	Recorded video + Moodle		Asynchronous
13	L1	Shifted data problem	S3	Lecture Notes + Textbook 6.6	F2F	
	L2	Unit step Function	K2	Lecture Notes + Textbook 6.6	F2F	
	L3	Short impulses function	K1 K2	Recorded video + Moodle	Asynchronous	
14	L1	Integration of transform	K1	Lecture Notes + Textbook 6.6	F2F	
	L2	Differentiation of transform	K1	Lecture Notes + Textbook 6.7	F2F	
	L3	Power series method introduction	K1 K2	Recorded video + Moodle	Asynchronous	
15	L1	Power series method 1	S3	Lecture Notes + Textbook 5.1	F2F	
	L2	Power series method 2	K1	Lecture Notes + Textbook 5.1	F2F	
	L3	Power series method 3	K1 K2	Online lecture on Teams	Synchronous	
16	L1	Course Review and final exams	K1 K2	Lecture Notes + Textbook 5.1	F2F	
	L2	Course Review and final exams	K1 K2	Lecture Notes + Textbook 5.1	F2F	
	L3	Course Review and final exams	S3 K2	Online lecture on Teams	Synchronous	

Credit Hours Distribution Report		
Learning Style		Contact Hours
F2F		32
Asynchronous		12
Total		44
Academic Honesty/ Student Conduct	<ul style="list-style-type: none"> ○ As a student at Philadelphia University, you are expected to follow the university regulations and guidelines for academic honesty/student conduct found in student handbook. ○ This means that you should not cheat, plagiarize and let another student use your account in LMS learning portals. 	
Attendance Policy	<p>Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.</p>	